Eliashberg Theory of Strong-Coupled Superconductors
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What are hw, and V?

Can we go beyond the approximation that D(E)V « 1?

In the strong electron-phonon coupling limit, the single particle states (k, o) are no
longer good eigenstates. These states are lifetime broadened by phonon emission.

Treat the gap A as a complex function of energy. The energy-dependent phase is
distinct from that of the coherent BCS gap.

Im[A(E)] 1s due to the decay of quasiparticles and the creation of real phonons
Re[A(E)] goes through resonant absorption when E~hwynonon



Eliashberg Theory of Strong-Coupled Superconductors

Self-consistent gap equation Reduces to BCS with ...
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Strong-Coupled Superconductors

With strong electron-phonon coupling, the Cooper pairs and quasiparticles have a
finite lifetime. This is modeled by introducing a “gap function” A(®w) which is both
complex and frequency dependent.

T. is enhanced by strong-coupling effects:
R " ( —1.04(1 + 4) )

As opposed to BCS weak coupling:
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where @y, is used as an average phonon frequency, and it and ;i are
defined by
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a?(w)F(w) is called the Eliashberg function.
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Strong-Coupling Correction to Gap Ratio
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Fig. 4. The gap ratio 24, /(kT.) as a function of T./wy,. The black crcles indicate
theoretical calculations, with some of the elements and a couple of binary alloys
indicated. The unmarked arcles refer mostly to varous binary alloys [57]. These
calculations use an electron-phonon spectral function =(vi*F(v) and value of Ty
extracted from tunneling experiments, or, in some cases taken from calculations
[58,58], Selected experimental values are indicated with red squares. Mote the
excellent agreement of theory with experiment in the case of 5n, Pb and Hg, with
maore deviation in the case of vanadium and niohioum. Sources are available in Ref.



The Eliashberg Function

Electron-phonon scattering
from k to k” with creation of
a phonon ha, ., with
polarization A
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is a dimensionless measure

of the strength of

electron-phonon coupling.

Ranges from 0.1 to 1.7 in various metals
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Predictions for A in the Strong Coupling Limit
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Fic. I11.8. Comparison of the theoretical electron—phonon coupling constants obtained
from pseudopotentials with those obtained empirically using McMillan’s formula,



Predictions for T_in the Strong Coupling Limit

In the strong-coupling limit:
1
Te ~ Mw?) ~ M

where M is the ionic mass. This argues for materials light masses (hydrogen)

Allen and Dynes, Phys. Rev. B 12, 905 (1975)

T, = 0.183  A{w?) forA>10and u* =0

T. increases with no saturation for very strong coupling!

T, (K) (1) (K} N(0)<I2> V(05 (K) A
Nb 9.2 175 4.7 183 0.85
NbsSn 18.1 146 7.9 163 1.67

Pb 7.2 60 24 65 1.55




Prediction for Isotope Exponent o
in the Strong Coupling Limit

T.M% = constant
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Tunneling Spectroscopy and the Eliashberg Function
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Fig. 1.6. (a) Normalized conductance of a tunnel junction involving lead at 0.3 K
(after Giaever, Hart, and Megerle, 1962). Note the extremely sharp energy gap.
The small deviations of the density of states from unity in the 4-10 mV range are
due to the phonons of lead. (b) Dlustration of the use of tunneling to determine
the effective phonon spectrum o”F{w) of a strong-coupling superconductor. The
Pb phonons are revealed in detail by the analysis of McMillan and Rowell (1965).
Curves A, B, and C, respectively, show the second derivative, first derivative, and
effective phonon spectrum for lead.
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Extracting the Eliashberg Function from Tunneling Spectroscopy Data

Tunneling Conductance dl/dV
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Alw) = A (w) + i Ay (w)

A, (w) ~ 1/ lifetime of excitations

A, (w) is large when phonon
emission is possible

DOS with complex A

N(w)= RG{[mz — La;!(w)]uz}



Tunneling Spectroscopy and the Eliashberg Function
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Fic. 111.6. Comparison of the phonon density of states of Pb as obtained from (a) neu-
tron scattering (after Stedman et al.'®) with that obtained from (b) electron tunneling (after
McMillan and Rowell'").



Extracting the Eliashberg Function from Tunneling Spectroscopy Data

Fig. 4.5. (a) The real and imaginary parts of the computed gap function A(w) for
lead obtained from the data of McMillan and Rowell (1969). In this figure, the
dashed curve is the imaginary part and the solid curve is the real part of the gap
function.
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Fig. 4.4. A comparison of the a*F(w) functions for lead obtained from the data
of McMillan and Rowell (1969) as reduced using the variational scheme (dashed
curve) and using the nonvariational scheme of Galkin, D’yachenko, and Svistunov
(1974) (solid curve). (After Galkin, ID’yachenko, and Svistunov, ].974@
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